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We present a detailed analysis of ion heating caused by thermal fluctuation noise in
ion traps. The results of the analysis are used to estimate thermal noise ion heating
rates for a variety of trap electrode configurations and materials, including recent scal-
able multiplexed planar ion trap proposals based on silicon VLSI technology. We find
that minimizing thermal noise ion heating places severe constraints on the design and
materials used for ion traps.
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1 Introduction

Trapped ions are a promising technology for achieving quantum computation. There is hope

that quantum computers will provide unique speedup and regeneration artibutes relative to

classical computers for a limited range of tasks including factoring large numbers, searching

large data bases, simulating large quantum systems, and regenerating quantum cryptographic

signals. The hyperfine or metastable ion levels are used as qubits. Single qubit operations

are achieved by laser excitation pulses on single ions. Two qubit operations make use of the

vibrational or motional coupling between the ions. These two qubit operations are sensitive

to random vibrational excitations of the ion motion in the trap. Ideally the ions are Doppler

and Raman sideband cooled to their lowest vibrational level and kept cold throughout the

quantum computation. Vibrational level spacings are at frequencies of a few megahertz.

It is also preferable to operate the computer with the trapping and control electrodes at

room temperature. However, in a room temperature environment, thermal fluctuations in

the resistive elements of the electrodes and voltage supplies will inevitably heat the ions and

constitute a fundamental limit for decoherence errors introduced by ion heating. The thermal

fluctuation heating has not been a primary concern for experiments to date since the ions

are far enough from the electrodes to make the thermal fluctuation heating rates fall into the

range below one motional quanta per second, much smaller than the heating rates actually

observed which are thought to be caused by patch potential fluctuations on the electrode

surfaces. However, as the dimensions of the trap electrodes are reduced to achieve scalable
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quantum computers, the thermal heating constraints should be taken into account in the trap

design process.

Thermal fluctuation heating can be thought of as arising from voltages generated by

thermal electrical currents in the resistive elements of the trap circuit. Analysis shows that

the ion heating rates from these fluctuating thermal potentials vary as the inverse square of

the distance between the electrode and the ion and directly with the resistance in the circuit.

The symmetry of the trapping electrodes is also important in determining the ion heating

rates. We find from the analysis presented here that the ion heating rates can become a

major concern as ion trap designs evolve towards scalable multiplexed ion trapping systems,

new electrode materials, more complex electrode configurations, and ion transport between a

variety of trap locations. We present an in-depth analysis of the various thermal ion heating

effects for ion traps with a variety of materials including semiconductor electrodes and ion

trap control voltage sources that can be easily programmed in a scalable design.

Multi-level and planar ion trap designs are introduced in Section 2. A detailed analytical

analysis of the thermal fluctuation ion heating is presented in Section 3 for heating along each

of the three principal axes of an ion trap. The results of this analysis are applied to a two-level

ion trap representative of what is currently used in quantum computing experiments and a

recently proposed scalable multiplexed planar ion trap design. Ion heating associated with

noise on the RF voltage drive is discussed in Section 4. Section 5 compares our analytical

results with current experiments. And in Section 6, we summarize our results and suggest

strategies for minimizing the thermal noise ion heating.

2 Ion Trap Designs and Materials

2.1 Multi-level Ion Traps

Present traps typically have two or three levels of electrodes. The ions are trapped in

a space between the electrodes. An example of a two-level trap is shown in Fig. 1 [1]. Ion

traps with three levels of electrodes are also used in experiments with the control electrodes

positioned above and below the RF trapping electrodes [2]. The materials used in present traps

are typically gold electrodes and either alumina or silica insulator and support structures. The

distances of the trapped ion from the electrodes varies in the range from 100 to 400 µm.

Ion heating in the traps studied to date appears to arise from sources other than thermal

noise, possibly fluctuations in “patch” potentials on the gold electrodes [3]. It is not clear why

these patch potentials should be varying at frequencies near the ion vibrational frequencies, in

the range between 1 and 10 MHz. There is accumulating evidence that the obseved heating

rates vary inversely as the fourth power of the ion/electrode distance [2], instead of the

inverse square variation expected from thermal noise heating. Grain boundaries in the gold

should vary in size and contact potential at much slower rates. At the UHV pressures in ion

traps there are few organic contaminants that could be moving rapidly across the electrode

surfaces. Controlled experiments need to be performed in order to understand the heating

rates. Temperature, surface roughness, and material composition could be varied along with

the distance of the ion from the electrode in order to better understand the anomalous “patch”

field heating. The thermal noise heating rates due to the surface resistance of the gold are

in the range near 1 s−1 (one motional quanta per second) for the present traps, since the
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Fig. 1. Present day two-level ion trap. RF potentials are applied to two opposite electrodes for
confinement along the x- and y-axes, and DC potentials are applied to the remaining (control)
electrodes for confinement and moving ions along the z-axis. Figure courtesy of M.A. Rowe, NIST.

gold has a very low resistivity and the cross-sectional area of the electrodes is relatively large.

However, care must be taken to minimize the resistance in the control electrode circuits in

order to avoid heating from series resistances.

2.2 Planar Ion Traps

Planar ion traps contain both RF and control electrodes within or near a common plane.

The ion is trapped above the plane and can be cooled or excited by laser beams propagating

parallel to the surface of the trap. Initial designs of planar traps [4] use gold electrodes on

silica or quartz substrates. A number of geometries have been considered. Planar ion traps

have been demonstrated experimentally [5] using relatively large electrode and ion/electrode

dimensions (of order millimeters) and macroscopic ions. Recently the original planar trap

designs [4] have been demonstrated experimentally with Mg ions [6]. These initial experiments

are encouraging since the measured ion heating rates are in the same range as those in the

more conventional two-level traps.

Planar trap structures can be easily spatially multiplexed [7] to build up an ion trap

architecture that can be scaled [8] to large numbers of ions, in the range of thousands of

ions/cm2. An example of a scalable ion trap based on silicon VLSI fabrication technology is

shown in Fig. 2.

With RF electrode spacing near 100 µm the ion is trapped at a vertical distance of ap-

proximately 50 µm above the planar surface. This 50 µm is required in order to propagate the

laser beam over the surface of the ion traps without it being distorted or scattered. Note that

the ion/electrode spacing in this planar trap example is a factor of 2 to 10 smaller than in the

multilevel traps. As a result of the inverse square dependence of thermal noise heating, we

expect that ion heating from thermal noise sources will be from 4 to 100 times larger for the

planar traps as compared to present day multi-level traps. The RF electrodes are fabricated

using metals, e.g. tungsten or gold. The RF electrodes are isolated from the control electrodes

by a 10 µm thick layer of SiO2 that will withstand the large RF voltages required in this type
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Fig. 2. Scalable ion trap design. The metal RF electrodes are spaced by 100 µm and are deposited
on 10 µm high SiO2 pedestals. The central control electrode is connected to underlying electronics
by a via shown here as a column extending downward. The control electrodes are separated by
thin layers of SiO2.

of trap.

The control electrodes can be formed by either a thin layer of metal, or, as shown in Fig. 2,

a thick layer of highly doped polysilicon. The doped polysilicon has a resistivity nearly 200

times higher than metals so that a thicker layer is required for a resistance comparable to the

metallic case. The control electrodes are electrically isolated from one another by thin thermal

oxide layers that extend down through the polysilicon as shown in cross-section in Fig. 2.

Silicon fabrication techniques may allow very smooth electrode features, approaching atomic

smoothness in some cases. It has been noted that rough surfaces enhance the ion heating

mechanisms present in the current traps. Smooth surfaces may become more important as

the ion/electrode distance decreases. Materials other than gold may have thin oxide coatings;

polysilicon is one example. These oxides can potentially cause ion heating or trap distortion

problems that could add to anomalous patch and thermal noise heating.

The RF voltages on the control electrodes are grounded by a capacitive divider network

indicated schematically by the capacitances C1 and C2 in Fig. 2. The small capacitance

between the RF electrodes and the control electrodes is determined by the 10 µm thick SiO2

electrode support layer. The much larger capacitance between the control electrodes and the

substrate is determined by a thin SiO2 insulating layer and the relatively large area under

the control electrodes. The ratio of C2/C1 is approximately 300, large enough to maintain a

low RF level on the control electrode and symmetrize the trap (see Section 4).

The skin depth of the RF trapping fields at frequencies near 100 MHz is large compared to

the RF and control electrode thicknesses used in the examples we will analyze. For example,

the skin depth for tungsten is 20 µm and the skin depth for highly doped polysilicon is 200
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µm at an RF frequency of 50 MHz. We will approximate the resistances from the material

resistivites and the physical dimensions of the electrodes.

3 Ion heating by resistive thermal fluctuations

In this section we consider ion heating by resistive thermal fluctuations using two alternative

methods. The first starts with the voltage fluctuations on the trap electrodes caused by

thermal noise in the resistance of the electrodes and drive circuits and proceeds to calculate

their effect on the ion motion. The second starts with currents induced in the trap electrodes

by ion motion and uses the fluctuation-dissipation theorem to relate the power dissipated in

the resistive elements to the ion heating rates. The fluctuation-dissipation theorem guarantees

the equivalence of these two methods, but for different electrode geometries and sources of

resistance it is computationally easier to use one or the other. After describing the methods

and applying them to a few simple geometries, we present resistive thermal fluctuation heating

rates for both current two-level and proposed planar ion traps.

3.1 Direct calculations of the ion heating rate

For this first method of computing ion heating rates, we start with the spectral density of

the voltage fluctuations on the trap electrodes. We relate the spectral density of voltage

fluctuations on the trap electrodes to the spectral density of electric field fluctuations at the

ion position for several electrode geometries, and we use the spectral density of electric field

fluctuations to find the ion heating rate. This method is well established in the literature [9, 3],

and it will be referred to as the direct method of computing ion heating rates in this paper.

The spectral density of voltage fluctuations on each trap electrode SV (ω) is generated by

Johnson noise in the resistance of its drive circuit,

SV (ω) = 4kBTR(ω) , (1)

where R(ω) is the real part of the complex impedance Z(ω) at frequency ω. Voltage fluc-

tuations on the trap electrodes generate electric field fluctuations at the ion position which

give rise to heating. The spectral density of voltage fluctuations and the spectral density of

electric field fluctuations along the i principal axis (i ∈ {x, y or z}) of the ion motion SEi
(ω)

are related to each other by

SEi
(ω) =

SV (ω)

d2
i

, (2)

where the length scale di is obtained by solving for the electric field component along the

i principal axis at the equilibrium ion position (x0, y0, z0) due to a voltage V on the trap

electrode and using

Ei(x0, y0, z0) =
V

di
. (3)

One can then compute the heating rate using time-dependent perturbation theory:

ṅi =
q2

4m~ωi
SEi

(ωi) , (4)

which gives the average number of harmonic oscillator quanta gained per unit time by the ion

motion along the i principal axis [10, 9]. Here q is the ion charge, m is the ion mass, and ωi is
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the ion secular frequency along the i principal axis. We now compute di for several electrode

geometries.

x

y

z

2b

R

2a

ion

Fig. 3. Geometry for a model of thermal voltage fluctuation ion heating by the resistance between
two parallel trap electrodes. The two circular electrodes extend indefinitely in the z direction.
Voltage fluctuations in the resistor generate electric field fluctuations in the x direction at the ion
position (0, y, 0), which heat the ion motion.

The first geometry models ion heating due to the thermal voltage fluctuations in a resistor

between two parallel circular cylinders of radius a and infinite length (see Fig. 3). This could

be a model of heating of the x motion in a planar ion trap due to the finite resistivity of the RF

electrode material or a model of the x and y heating in a two-level trap where the resistance

is primarily that in the filter networks used to suppress capacitive pickup of the RF drive

on the control electrodes. Electrodes besides the two in question are ignored in this model.

The coordinate system is constructed such that the electrodes are parallel to the z-axis. The

two electrodes are located at (x, y) = (±b, 0) and are biased at ∓V/2, respectively. As can

be verified by checking that it satisfies both Laplace’s equation and the boundary conditions,

the potential outside the electrodes is given by

φ(x, y) =
V

2 cosh−1(b/a)
ln

√

(x −
√

b2 − a2)2 + y2

(x +
√

b2 − a2)2 + y2
. (5)

The charge on a segment of length l of one of the electrodes

Q = ∓ πǫ0V

cosh−1(b/a)
l , (6)

and thus the capacitance between the two electrodes is given by

C =
πǫ0

cosh−1(b/a)
l . (7)

In the cases we consider this capacitance is not large enough to suppress the voltage fluctua-

tions on the trap electrodes. The electric field at the ion position,

E(0, y, 0) =
V

cosh−1(b/a)

√
b2 − a2

y2 + b2 − a2
î , (8)
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is in the x direction and hence thermal voltage fluctuations in the resistance between the two

electrodes heat the x mode of the ion motion. The length scale is given by

dx = cosh−1(b/a)
y2 + b2 − a2

√
b2 − a2

(9)

for this geometry.

For other geometries we compute the length scales di numerically. We solve for the electric

field at the ion position using a finite element electrostatics solver. The electrode of interest

is biased at a potential V and the other electrodes are held at ground. Because the monopole

term of this charge distribution can be nonzero care must be taken to implement the boundary

condition lim|r|→∞ φ(r) = 0 properly, particularly for the open geometries of planar ion traps.

We then use Eq. 3 to compute the length scales di. Results are presented in Sections 3.3

and 3.4 where detailed specifications of trap geometries are given.

3.2 Indirect calculations of the ion heating rate

The second method of calculating rates for ion heating by resistive thermal fluctuations relies

on a fundamental link, between these fluctuations and energy dissipation, established by

the fluctuation dissipation theorem. Energy is dissipated when an ion moves within an ion

trap. This energy is dissipated as the currents, that redistribute the charge on the electrodes

as the ion moves, flow through the resistive electrode material or through the resistance of

the drive circuits. As a consequence, an ion experiences damped motion characterized by a

friction coefficient. According to the fluctuation-dissipation theorem, this friction coefficient

and the trap circuitry temperature uniquely determine the spectral density of the electric field

fluctuations at the ion. Hence, determining the spectral density is reduced to the problem

of calculating a friction coefficient that can often be obtained by a simple classical analysis.

As long as the ion/resistive-element coupling is linear (as is the case for a charge coupled

electrostatically to a linearly resistive object) the value of this coefficient is the same regardless

of whether one does a fully quantum calculation or a fully classical calculation. The damping

coefficient does not depend on the state of the system, in particular on the ion state. The ion

state can be described by a quantum state (e.g. a Fock or coherent state) without changing

the validity of this calculation. We note that in particular this indirect method can handle

heating due to nonzero electrode resistivity much more easily than the direct method.

The power dissipated by currents induced in the trap electrodes by an ion whose position

along the x principal axis is given by x = xm sin(ωxt) can be calculated for a given electrode

geometry by solving for the charge induced in the trap electrodes as a function of time. The

dissipated power can be described in terms of a friction coefficient for the ion motion µ defined

by

Fx = −µ
dx

dt
. (10)

In terms of µ, the power dissipated is given by

P = µ

〈

(

dx

dt

)2
〉

=
µx2

mω2
x

2
, (11)

which can be equated to the power dissipated in the trap electrodes to yield an expression

for the friction coefficient. The brackets denote time averaging. The fluctuation-dissipation
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theorem relates the friction coefficient defined by Eq. 10 to the spectral density of the force

fluctuations (in the high electrode temperature limit),

SFx
(ω) = 4kBTµ , (12)

for general linear dissipative systems [11]. The spectral density of electric field fluctuations,

obtained by dividing Eq. 12 by q2, is then used to compute the ion heating rate via Eq. 4.

We now compute the dissipated power for two electrode geometries.

x

y

z

xg

R

ion

τ

x

y

z

ion
(a) (b)

ρ ρ = 0

Fig. 4. Geometries for two models of resistive thermal fluctuation ion heating by planar electrodes.
The electrodes extend indefinitely in the x and z directions. (a) Here ion motion along any of
the principal axes induces currents in the resistive planar electrode below it. The fluctuations
concomitant to this dissipation heat all three modes of the ion motion. (b) In this model, ion
motion along either of the x or y principal axes induces a current in the resistor between two
perfectly conducting semi-infinite planar electrodes.

First consider the power dissipated by a slab of material of resistivity ρ depicted in

Fig. 4(a). This is a model of the control electrodes in a planar ion trap. The electric field of

an ion located at (x, y, z) = (xm sin(ωxt), y0, 0) above a perfectly conducting infinite slab of

material whose top surface is located at y = 0 is found by the method of images to be

E(x, y, z) =
q[(x − xm sin(ωxt))i + (y − y0)j + zk]

4πǫ0[(x − xm sin(ωxt))2 + (y − y0)2 + z2]3/2

− q[(x − xm sin(ωxt))i + (y + y0)j + zk]

4πǫ0[(x − xm sin(ωxt))2 + (y + y0)2 + z2]3/2
. (13)

The surface charge density ρs = ǫ0E · j is thus given by

ρs(x, z) = − qy0

2π((x − xm sin(ωxt))2 + y2
0

+ z2)3/2
. (14)

The surface current density can be obtained using charge conservation in two dimensions,

∂ρs

∂t
+ ∇ · Js = 0 , (15)

and the boundary condition lim|r|→∞ Js(r) = 0:

Js(x, z) = − qxmy0ωx cos(ωxt)i

2π[(x − xm sin(ωxt))2 + y2
0

+ z2]3/2
. (16)

Now consider that the slab is not perfectly conductive but has resistivity ρ and thickness τ .

For skin depth

δ(ωx) =

√

2ǫ0c2ρ

ωx
≫ τ (17)
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the surface current density Js will be uniformly distributed through the thickness of the slab,

such that the volume current density is given by

J(x, y, z) = − qxmy0ωx cos(ωxt)i

2πτ [(x − xm sin ωxt)2 + y2
0

+ z2]3/2
(18)

for −τ < y < 0. Eq. 17 is satisfied for all of the electrodes which we consider; for example

the skin depth of tungsten at 10 MHz is 36 µm whereas proposed planar ion trap designs use

tungsten electrodes with thickness around 0.25 µm. The dissipated power for this geometry

is given by

P =

∫ ∞

−∞

dx

∫ 0

−τ

dy

∫ ∞

−∞

dzρ〈|J(x, y, z)|2〉 =
ρq2x2

mω2
x

16πτy2
0

(19)

where the angle brackets denote time averaging. The spectral density of electric field fluctu-

ations parallel to a resistive plane is thus

SEi
(ω) =

kBTρ

2πy2
0
τ

. (20)

A similar analysis considering ion motion in the y direction shows that the spectral density

of electric field fluctuations perpendicular to a resistive plane is identical, thus the above

equation holds for all i. If we replace τ with δ(ω) in Eq. 20 it shows the same scaling as the

limit δ(ω) ≪ y0 of the results reported in [12] and [3], which are derived for δ(ω) ≪ τ .

The second geometry we consider is again a planar electrode. This time, however, the

electrode is segmented perpendicular to the ion motion as shown in Fig. 4(b) and we consider

dissipation in the resistance between the two half-planes. This is a model of dissipation in the

drive circuits of adjacent control electrodes in a planar ion trap. Again let the ion be located

at (x, y, z) = (xm sin(ωxt), y0, 0) and the upper surface of the electrodes be located at y = 0.

The two electrodes are electrically isolated by an infinitesimal gap at x = xg and connected

through a resistance R. The charges on the electrodes x < xg and x > xg are

Q< =

∫ xg

−∞

dx

∫ ∞

−∞

dzρs(x, z) = − q

2
− q

π
tan−1

[

xg

y0

+
xm

y0

sin(ωxt)

]

(21)

and

Q> = −q − Q< (22)

where ρs is given by Eq. 14. The power dissipated by the current flowing between the two

electrodes is given by

P =
〈

(dQ</dt)
2
〉

R =
Rq2x2

mω2
x

2π2y2
0











1
(

1 +
(

xg

y0

)2
)2

+ O
(

xm

y0

)2











. (23)

Since xm is of the order of the size of the ion’s ground state wavefunction, xm/y0 is very small

and we drop the second order correction. The spectral density of electric field fluctuations in

the x direction is thus given by

SEx
(ω) =

4kBTR

π2y2
0

1
(

1 +
(

xg

y0

)2
)2

. (24)
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Table 1. Two-level ion trap parameters

Parameter Value
Gap width, wg 400 µm
Gap height, hg 360 µm
Electrode width, we 1 mm
Electrode height, he 200 µm
RF electrode length, lRF 4 mm
Endcap control electrode length scale, Vc/Ez(x0, y0, z0) 4.1 mm
Electrode sheet resistance, ρ/he 5.7 mΩ/� (mΩ per square)
Control electrode filter network resistor, Rc 1 kΩ
Control electrode filter network capacitor, Cc 820 pF
Electrode temperature, T 300 K
RF drive frequency, Ω 2π × 230 MHz
Radial secular frequency, ωx = ωy 2π × 6 MHz
Axial secular frequency, ωz 2π × 2.9 MHz

Upon similar analyses we find that the spectral density of electric field fluctuations in the y

direction is given by

SEy
(ω) =

4kBTR

π2y2
0

(

xg

y0

)2

(

1 +
(

xg

y0

)2
)2

, (25)

and there are no electric field fluctuations in the z direction for this geometry.

3.3 Ion heating rates for two-level traps

In this section we present rough estimates of the resistive thermal fluctuation heating rates

in a two-level ion trap representative of what is currently used in quantum computation

experiments. Current multi-level ion traps are typically made by depositing 0.3 – 3.5 µm

thick gold electrodes on alumina wafers [3, 1, 2]. We present heating rates for the two-level

trap geometry used in [1] and shown in Fig. 5; the relevant parameters are summarized in

Tab. 1.

xy

z

wg

hg

he

45°

we

RF

RFcontrol

controlV

Rc

Rc
Cc

Cc

Fig. 5. Schematic showing two-level ion trap geometry and control electrode filter network. The
RF and control electrodes are labeled, and the principal axis coordinate system is drawn at the ion
location. The trap is translationally invariant along the z axis except that the control electrodes
are segmented to provide axial confinement.

Thermal heating in current two-level traps is dominated by the resistors in the filter

networks used to suppress capacitive pickup of the RF drive voltage on the control electrodes.
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Table 2. Two-level ion trap heating rates for 9Be

Mechanism SEi
(ωi) ṅi [s−1]

[(V/m)2 Hz−1]
x heating by resistance of control electrode filter network 0 0
x heating by resistance between RF electrodes 1.4 × 10−16 1.5 × 10−2

x heating by resistivity of electrode material 2.4 × 10−17 2.5 × 10−3

Total x resistive thermal fluctuation heating 1.6 × 10−16 1.7 × 10−2

y heating by resistance of control electrode filter network 1.7 × 10−14 1.8
y heating by resistance between RF electrodes 0 0
y heating by resistivity of electrode material 2.4 × 10−17 2.5 × 10−3

Total y resistive thermal fluctuation heating 1.7 × 10−14 1.8
z heating by resistance of control electrode filter network 4.2 × 10−15 0.95
z heating by resistivity of electrode material 2.4 × 10−17 5.2 × 10−3

Total z resistive thermal fluctuation heating 1.7 × 10−14 3.8

Here the filter networks are composed of two cascaded RC low pass filters with effective

resistance

R(ω) = Re[Z(ω)] =
2 + (ωRcCc)

2

1 + 7(ωRcCc)2 + (ωRcCc)4
. (26)

Heating along the z principal axis by this resistance is computed using the direct method

with the scale length computed by [1] and repeated in Tab. 1. Heating rates along the x

and y principal axes by this resistance are computed using the model of two parallel circular

cylinders with separation 2b =
√

(wg + he)2 + (hg + he)2, radius a = he/2, and resistance

R = (2/3)R(ωi). The latter is reasonable because three control electrodes (three filter net-

works hooked up in parallel) correspond to each of the two cylinders (which are effectively

connected in series). The ion is located at y = 0.

The x and y heating by the resistance between the RF electrodes is likewise computed

using the direct method with the electric field fluctuations modeled by two parallel circular

cylinders. This time the resistance is due to the resistivity of the electrode material and is

estimated as R = lRF ρ/(4wehe), which is a reasonable approximation when the RF electrodes

are electrically connected at both ends.

The heating due to the resistivity of the electrode material is estimated using the indirect

method for heating above a resistive plane: Eq. 20 with y0 = wg/2. While this model provides

only a zeroth order estimate of the heating rate for this two-level electrode geometry, the

results show that heating by the resistivity of the electrode material is orders of magnitude

smaller than heating by the resistance of the control electrode filter networks so we do not

pursue a more accurate model.

Resistive thermal fluctuation heating rates for the ion trap parameters given in Tab. 1 are

presented in Tab. 2. The z heating due to the resistance of the control electode filter network

is given per control electrode in Tab. 2. There are two control electrode sets consisting of three

control electrode segments each, for a total of six control electrodes. An ion in the center of

the trap that oscillates in the z direction induces currents in four of these control electrodes,

i.e. the two end electrodes in each set. Thus the total z heating rate includes four times the

heating rate due to one control electrode filter network. The total heating rate along the z

axis is a few motional quanta per second, which corresponds to a decoherence time for the
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ion’s motional state of a few hundred milliseconds. This is the principal axis of most interest

to the quantum computing community, as the motional state along this axis is used as the

data bus for two qubit gates. The total heating rates along the other principal axes are of the

same order of magnitude. The heating rates which are measured experimentally in current

ion traps are two orders of magnitude larger, so ion heating by resistive thermal fluctuations

is considered unimportant [3] in the relatively large traps in present use.

3.4 Ion heating rates for planar traps

This section presents some estimates of the resistive thermal fluctuation heating rates for the

planar ion traps described in Section 2.2. Fig. 6 shows the particular geometry we consider,

and Tab. 3 gives the dimensions and impedances expected of first generation planar traps.

Resistive thermal fluctuation heating is caused by the resistance of the control electrode

voltage source as well as the resistivities of the RF and control electrode materials. The

control electrode voltage source is again the largest source of thermal heating, but the material

resistivities are no longer negligible.

x

y

z

s

hRF

wRF

RF

control

V

Rc Cc

RF

CRFCRF

Fig. 6. Schematic showing planar ion trap geometry. The ion is located at (x, y, z) = (x0, y0, z0)
and the principal axes of the ion motion are oriented as shown. The RF and control electrodes
extend lRF in the z direction, with the control electrode segmented to provide axial confinement.
hRF e is the RF electrode thickness and hce is the control electrode thickness. Both of these
thicknesses are typically near 1µm.

The resistance of the control electrode voltage source is a combination of the resistances of

the thru-wafer via which connects the ion trap chip to the integrated control chip, the CMOS

multiplexers used to distribute a few signals to many control electrodes, and the associated

semiconductor wiring. The shunt capacitance between the control electrodes and ground is

not expected to be large enough to mitigate the resistive thermal fluctuations. If the control

electrodes are split along either x = 0 or x = ±(s +wRF )/2 in order to allow control voltages

to tilt the principal axes for laser cooling, the x ion motion will be heated by the control

electrode voltage source resistance. The heating rates for both cases are computed using

Eq. 24 with R = 2Rc. We compute the z heating rates using the same equation for control

electrode segments with various positions relative to the ion. The z heating rate is very large

when an ion is directly over a gap between the electrode segments, but this only happens

for a short time when ions are being moved between trap regions. Finally, the y heating

rates due to the voltage source resistance for control electrodes segmented both parallel and
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Table 3. Planar ion trap parameters

Parameter Value
RF electrode separation, s 100 µm
RF electrode width, wRF 20 µm
RF electrode length, lRF 1 mm
Height of RF electrode support, hRF 10 µm
Location of electric quadrupole null (ion location), (x0, y0, z0) (0, 59 µm, 0)
Control electrode length scale, Vc/Ey(x0, y0, z0) 840 µm
RF electrode sheet resistance, ρRF /hRFe 0.2 Ω/�a

Control electrode sheet resistance, ρc/hce 0.2 Ω/�b

Control electrode source resistance (via, MUX, and wiring), Rc 30 Ω
Electrode temperature, T 300 K
RF drive frequency, Ω 2π × 100 MHz
Radial secular frequency, ωx = ωy 2π × 10 MHz
Axial secular frequency, ωz 2π × 5 MHz

aThis is appropriate for 0.25 µm of tungsten.
bThis is appropriate for either 20 µm of polysilicon or 0.25 µm of tungsten.

perpendicular to the RF electrodes are computed using Eq. 25.

The resistivity of the RF electrode material primarily heats the x mode of the ion motion.

This heating can be significant in a large multiplexed trap because the RF rails on either

side of an ion might not be electrically connected nearby. The resistance between the two

RF electrodes for a linear trap of length lRF and RF electrode width wRF in which the

RF electrodes are electrically connected at both ends is a maximum at the center of the

trap and given by R = (lRF ρRF )/(2wRF hRFe). We use the direct method with the model

of the potential between two parallel circular cylinders to compute the heating rate. The

electrode separation 2b is taken to be (s + wRF )/2, the electrode radius a = wRF /4, and the

ion position y = y0 − hRF . We calculate the heating rate for the y motion due to the RF

electrode resistance using the direct method with the control electrode length scale computed

numerically in two dimensions and provided in Tab. 4, and the resistance of one RF electrode

at the center of a linear trap segment: R = (lRF ρRF )/(4wRF hRFe).

The resistivity of the control electrode material heats the ion motion along the x, y, and

z principal axes. The heating rates are computed using the indirect method with Eq. 20. It

is seen in Tab. 4 that the heating due to the resistivity of the control electrode material is

small.

The analysis here suggests that the resistance of the control electrode voltage source is

the largest source of resistive thermal fluctuation heating and will continue to be such for

the z motion until Rc . 1 Ω. In contrast to current two-level traps, however, heating by the

resistivity of the RF electrode material and to a lesser extent the control electrode material

is also important and should not be neglected. Note that the heating rates in both Tabs. 2

and 4 are only estimates because of the approximate geometry models we have considered.

We think our rate estimates should model actual traps to an accuracy within 50%. For a more

accurate analysis of resistive thermal fluctuation heating the approximate geometry models

considered here should be replaced by the actual three-dimensional ion trap geometry and the

heating rates along each principal axis due to each electrode should be computed numerically.
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Table 4. Planar ion trap heating rates for 9Be

Mechanism SEi
(ωi) ṅi [s−1]

[(V/m)2 Hz−1]
x heating by resistance of split control electrode voltage source

– Split in between RF electrodes 9.6 × 10−12 620
– Split under RF electrodes 1.7 × 10−12 110

x heating by resistance of RF electrodes 8.2 × 10−13 53
x heating by resistivity of control electrode material 3.8 × 10−14 2.4
Total x resistive thermal fluctuation heatinga 2.5 × 10−12 160
y heating by resistance of split control electrode voltage source

– Split in between RF electrodes 0 0
– Split under RF electrodes 4.7 × 10−12 300

y heating by resistance of control electrode voltage source
– Ion directly above gap 0 0
– Ion 50 µm to side of gap 2.3 × 10−12 150
– Ion 100 µm to side of gap 1.8 × 10−12 120

y heating by resistance of RF electrodes 5.9 × 10−14 3.8
y heating by resistivity of control electrode material 3.8 × 10−14 2.4
Total y resistive thermal fluctuation heatingb 3.8 × 10−12 240
z heating by resistance of control electrode voltage source

– Ion directly above gap 9.6 × 10−12 1200
– Ion 50 µm to side of gap 3.3 × 10−12 420
– Ion 100 µm to side of gap 6.4 × 10−13 83

z heating by resistivity of control electrode material 3.8 × 10−14 4.9
Total z resistive thermal fluctuation heatingc 6.9 × 10−13 88

aAssuming that the control electrodes are split under the RF electrodes.
bAssuming that the control electrodes are not split parallel to the RF electrodes for laser cooling and the
ion is located over the center of a 200 µm long control electrode in the z direction with no other control
electrode segments nearby. Note that while this is not consistent with the total heating rate presented for
the x motion, a more complete analysis would require considering the effect of each two-dimensional control
electrode individually.
cAssuming that the ion is located over the center of a 200 µm long control electrode and there are no other
control electrode gaps nearby.
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Fig. 7. Schematic drawing of (a) a four rod Paul trap and (b) a planar trap.

4 RF Drive Fluctuation Ion Heating

Typically there is considerable noise on the trap electrodes generated by the RF drive. The

electrode voltages are generated by an RF resonator, e.g. a helical resonator [13, 14]. The

resonator is driven by an RF amplifier with a gain of over 1000. If the noise at the input

to this amplifer were near the thermal level for an input resistance of 50 Ω, then the output

noise would be quite large. Since the trapping mechanism is a nonlinear process, noise at the

sidebands Ω±ωi, Ω± 2ωi, . . . of the drive frequency Ω will parametrically mix with and heat

the ion motion. In the following we show that while for symmetric traps the noise is common

mode and does not heat the ions, RF drive fluctuations do heat the ion motion in asymmetric

ion traps. We find that the heating associated with trap asymmetry is negligible for our model

planar traps when compared to that caused by thermal fluctuations in the electrodes.

4.1 Symmetric Trap Electrodes

Consider a symmetric Paul trap which confines in the x − y plane but is translationally

invariant along the z direction as shown in Fig. 7(a). The trap potential can be written as

φ(x, y) =
1

2

(

1 +
x2 − y2

R′2

)

V0 cos(Ωt) (27)

where Ω is the oscillation frequency of the RF drive and R′ is the trap radius of curvature,

typically of the order of the electrode separation. The electric field near the ion is then

E(x, y) = −∇φ = −
(

xi − yj

R′2

)

V0 cos(Ωt) . (28)

The equation of motion for the ion in the y direction is given by

m
d2y

dt2
− qV0

R′2
y cos(Ωt) = 0 . (29)

A similar equation of motion holds in the x direction.
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We now make the assumption that the y motion can be separated into a fast part y1 that

oscillates at the trap frequency Ω ∼ 100 MHz and a slow part y0 that oscillates at a much

lower frequency, the secular frequency of the ion ωy ∼ 1 MHz. Then the equation for the

motion along the y direction can be decomposed into

m
d2y0

dt2
− qV0

R′2
y1 cos(Ωt) = 0 (30)

and

m
d2y1

dt2
− qV0

R′2
y0 cos(Ωt) = 0 . (31)

The fast equation (Eq. 31) can be integrated under the approximation that y0 is constant

over one cycle of y1 to yield

y1 = − qV0

mΩ2R′2
y0 cos(Ωt) . (32)

Substituting this into the slow equation (Eq. 30) yields

m
d2y0

dt2
+

q2V 2
0

mΩ2R′4
y0 cos2(Ωt) = 0 (33)

for the secular motion y0. Time averaging cos2(Ωt) we obtain

d2y0

dt2
+ ω2

yy0 = 0 (34)

where the frequency of the ion’s secular motion is given by

ωy =
qV0√

2mΩR′2
. (35)

This analysis is exact in the limit Ω ≫ ωy.

Proceeding from this well known formulation of ion motion, we add noise to the potential

of the RF electrodes which comes from the RF drive electronics. Specifically we consider the

case when

φ(x, y) =
1

2

(

1 +
x2 − y2

R′2

)

[V0 cos(Ωt) + v0(t)] (36)

where v0(t) is a fluctuating potential. The equation of motion is now

m
d2y

dt2
− qV0

R′2

(

cos(Ωt) +
v0(t)

V0

)

y = 0 . (37)

We again separate y into slow and fast parts y0 and y1, governed by

m
d2y0

dt2
− qV0

R′2

(

cos(Ωt) +
v0(t)

V0

)

y1 = 0 (38)

and

m
d2y1

dt2
− qV0

R′2

(

cos(Ωt) +
v0(t)

V0

)

y0 = 0 . (39)
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Integrating the latter equation we obtain

y1 = − qV0

mΩ2R′2

(

cos(Ωt) − Ω2

∫

dt

∫

dt
v0(t)

V0

)

y0 . (40)

Substituting this into the prior equation and time averaging cos2(Ωt) yields

d2y0

dt2
+ ω2

y

[

1 + 2
v0(t)

V0

cos(Ωt) − 2 cos(Ωt)Ω2

∫

dt

∫

dt
v0(t)

V0

]

y0 = 0 (41)

where we have dropped the term second order in v0(t)/V0. The first order fluctuation terms

v0(t)/V0 act as a fluctuating correction to the secular frequency and give rise to ion motion

phase noise. We thus see that to first order, fluctuations on the trap potential do not give

rise to heating in a symmetric trap (though they do give rise to phase decoherence).

4.2 Asymmetric trap electrode geometries

The planar ion trap is actually rather asymmetric as seen in Fig. 7(b). The electrodes at

RF ground are the control electrode (shown as a plate in Fig. 7(b)) and a distant ground

(typically the vacuum chamber). The potential near the ion position can be written as

φ(x, y) =
1

2

(

1 +
x2 − y2

R′2
+

2αy

R′′

)

[V0 cos(Ωt) + v0(t)] . (42)

where R′′ is a geometry dependent scale length that sets the electric potential slope at the

ion trapping site. Because the control electrode is capacitively coupled to the RF electrodes,

there is an extra term in the potential which is linear in y and proportional to the voltage on

the RF electrodes. The constant of proportionality is given by the capacitive voltage divider

consisting of the capacitances between the RF electrodes and the control electrode CRF and

the capacitance between the control electrode and ground Cc:

α =
Vc

VRF
=

2CRF

2CRF + Cc
. (43)

Writing the equation of motion in the y direction and separating it into fast and slow parts

as before, we obtain

m
d2y0

dt2
− qV0

R′2

(

cos(Ωt) +
v0(t)

V0

) (

y1 − α
R′2

R′′

)

= 0 (44)

and

m
d2y1

dt2
− qV0

R′2

(

cos(Ωt) +
v0(t)

V0

) (

y0 − α
R′2

R′′

)

= 0 . (45)

Solving Eq. 45 for the fast motion

y1 = − qV0

mΩ2R′2

(

cos(Ωt) − Ω2

∫

dt

∫

dt
v0(t)

V0

) (

y0 − α
R′2

R′′

)

(46)

and substituting the result into Eq. 44 gives

d2y0

dt2
+ ω2

y

[

2 cos2(Ωt) + 2
v0(t)

V0

cos(Ωt) − 2 cos(Ωt)Ω2

∫

dt

∫

dt
v0(t)

V0

](

y0 − α
R′2

R′′

)

+
√

2αΩωy
R′2

R′′

(

cos(Ωt) +
v0(t)

V0

)

= 0 . (47)
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Since the components of v0(t) which will give rise to the largest heating are at Ω±ωy, we can

approximate the double integral as −v0(t)/Ω2. Averaging cos2(Ωt) and dropping the terms

which do not have a component at ωy, we obtain

d2y0

dt2
+ ω2

y

[

1 + 4
v0(t)

V0

cos(Ωt)

]

y0 − 2
√

2α
ωy

Ω

q

m

v0(t) cos(Ωt)

R′′
= 0 . (48)

Of the remaining terms, the last one has a component at ωy due to the components of v0(t)

at Ω±ωy which gives rise to ion heating independent of y0. Using the formalism of [15], this

can be written as

d2y0

dt2
+ γ

dy0

dt
+ ω2

y

[

1 + 4
v0(t)

V0

cos(Ωt)

]

y0 = 2γ
dyin

0

dt
, (49)

with incoming fluctuations given by

2γ
dyin

0

dt
= 2

√
2α

ωy

Ω

q

m

v0(t) cos(Ωt)

R′′
(50)

and the associated dissipation term

γ
dy0

dt
(51)

written in by hand. Hence the spectral density of electric field fluctuations which goes into

Eq. 4 to compute the heating rate is

α2

2

ω2
y

Ω2

SV (Ω ± ωy)

R′′2
(52)

For the planar ion trap geometry described in Section 3.4, α = 4×10−3 and R′′ = 840 µm.

The value used here for R′′ is obtained from a numerical calculation of the planar trap

potential. If we model the RF drive as a resonant series RLC circuit and assume that the

input noise is broad band, then

SV (Ω ± ωy) =
SV (Ω)

Q2

(

1 −
(

1 ± ωy

Ω

)2
)2

+
(

1 ± ωy

Ω

)4

. (53)

We have measured the output noise of a helical resonator with Q = 290 and Ω = 2π × 30

MHz driven by an RF amplifier at its resonant frequency in our laboratory and found it to

be SV (Ω) = 2.79 × 10−14 V2/Hz. Putting this all together we find that the heating rate

due to voltage noise on the RF drive near the resonant frequency is of the order of ṅy = 0.2

s−1. This is quite small compared to the resistive thermal fluctuation heating rates found in

Section 3.4. In conclusion, RF drive noise contributions to the heating should be negligible

for the planar ion trap designs considered here.

5 Comparison with Experiments

Data from recent ion trap experiments is shown in Fig. 8 [2]. The heating rate (along the

axial direction, which is the motional mode used for most two qubit logic gates) is plotted as a

function of trap size for experiments done with several different ion species, along with a dotted



70 Modeling ion trap thermal noise decoherence

Fig. 8. Experimental ion heating rates, ṅ, as a function of distance of the ion from the nearest
electrode, d. This data is taken from many experiments in different labs using different ion species;
namely 111Cd+ (filled circles and diamonds), 9Be+ (empty triangles and squares), 198Hg+ (empty
diamonds), 40Ca+ (empty circles), and 137Ba+ (empty hexagons). The dashed line is a d−4

guide to the eye indicating the scaling behavior of patch potential heating. Figure courtesy of
L. Deslauriers, University of Michigan. We have overlaid our thermal noise heating estimate for
the two-level trap described in Section 3.3 (+) and for the planar traps described in Section 3.4
(×).

line which indicates the d−4 scaling consistent with patch potential heating. Since thermal

noise heating scales with d−2, this data suggests that thermal noise is not the dominant source

of heating in current experiments. In addition, the experimental heating rates are much larger

than that which is predicted by thermal noise calculations.

Also shown on Fig. 8 are the thermal heating rates for the two-level and planar traps from

Sections 3.3 and 3.4. For the two-level trap, the predicted thermal heating rate ṅ = 3.8 s−1

while the experimental heating rate is 100 s−1 [1]. While there is no experimental data for

the planar ion trap design, the predicted thermal heating rate is ṅ = 88 s−1; this fundamental

lower limit to the heating is by itself comparable to the total heating rate in many experiments.

It is clear that as traps evolve towards smaller and semiconductor based designs, thermal noise

heating will become more important in experiments.

6 Conclusions

As trap dimensions are scaled down, heating from thermal noise potentials generated by

resistive elements in the RF and control circuits begin to increase the ion heating rates to

the range that will introduce significant decoherence into quantum gates. Our analysis for

the planar ion traps shows that the ion heating induced by resistive elements in the control

electrodes is a particular concern. Future designs will have to minimize resistance in the

control electrodes as well as the associated switching and supply resistances. Resistivity of

the material used to make the RF electrodes is also important for traps where the RF rails

are long, as will be the case for a many qubit quantum computer. Noise from the RF source

does not appear to play a major role in the traps considered here.

Planar traps can be designed to minimize resistive thermal fluctuation heating. Since the

dominant heating source in current designs is the resistance in the control electrode voltage

source, the gaps between adjacent control electrodes should be kept as far away from the ion
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as possible. To reduce heating in the x direction, the gap in the control electrodes parallel to

the RF rails at x = 0 which is used to tilt the principal axes can be changed to two gaps under

the RF rails at x = ±(s + wRF /2). To reduce heating in the z direction, control electrodes

should be made as long in the z direction as practical and perhaps the area between the

RF rails should not be segmented. This, however, involves a tradeoff in that higher control

voltages will be required as the control electrode gaps are moved further away from the ion.

Even though the thermal noise heating is a concern, it is probably more important to un-

derstand and reduce the anomalous heating observed in experiments studied to date. Scaling

the anomalous heating rates reported by [1] and [2] to the dimensions, secular frequencies,

and ion masses used to calculate the resistive thermal fluctuation heating rates for planar

traps in Section 3.4, the anomalous heating rates in planar traps would be of the order of

ṅ ∼ 104 s−1. This estimate assumes that the anomalous heating rate scales as d−4 where

d is the distance from the ion to the nearest trap electrode, as would be the case for patch

potentials. This corresponds to a motional decoherence time of tens of microseconds which

is only marginally longer than the time for a two qubit gate. Clearly there needs to be more

research on the anomalous heating in order to make progress towards scaling down ion trap

dimensions.
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